Chapter 2: Force Vectors

Scalars and vectors

	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special notation used in TAM 210/211	None	Bold font or "~" under vector symbol Ex: \boldsymbol{A} or $\underset{\sim}{A}$

Multiplication or division of a vector by a scalar

Vector addition

All vector quantities obey the parallelogram law of addition $\boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}$

Commutative law: $\quad \boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$

Associative law: $\quad \boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})=(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}$

Vector subtraction:

Scalar/Vector multiplication:

Force vectors

A force - the action of one body on another-can be treated as a vector, since forces obey all the rules that vectors do.

Cartesian vectors

Rectangular coordinate system: formed by 3 mutually perpendicular axes, the x, y, z axes, with unit vectors $\hat{i}, \hat{j}, \hat{k}$ in these directions.
Note that we use the special notation " "" to identify basis vectors (instead of the " \sim " notation) $(\hat{i}, \hat{j}, \hat{k})$ or $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$

Rectangular components of a vector

$$
\boldsymbol{A}=\boldsymbol{A}_{x}+\boldsymbol{A}_{y}+\boldsymbol{A}_{z}
$$

Cartesian vector representation
$\boldsymbol{A}=A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}$

Magnitude of Cartesian vectors

Direction of Cartesian vectors

Example

The cables attached to the screw eye are subjected to the three forces shown.
(a) Express each force vector using the Cartesian vector form (components form).
(b) Determine the magnitude of the resultant force vector
(c) Determine the direction cosines of the resultant force vector

Position vectors

Example

The ring at D is midway between points \boldsymbol{A} and \boldsymbol{B}. Determine the lengths of wires AD, BD and CD

Force vector directed along a line

The force vector \boldsymbol{F} acting a long the rope can be defined by the unit vector \boldsymbol{u} (defined the direction of the rope) and the magnitude of the force.

Force vector directed along a line

Don't look up!

Dot (or scalar) product

The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such

$$
\boldsymbol{A} \cdot \boldsymbol{B}=|\boldsymbol{A}||\boldsymbol{B}| \cos (\theta)
$$

Laws of operation:

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A} \\
& \alpha(\boldsymbol{A} \cdot \boldsymbol{B})=\alpha \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \alpha \boldsymbol{B}
\end{aligned}
$$

Note that:

$\boldsymbol{A} \cdot(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{C}$

Cartesian vector formulation:

Note that:

Projections

The scalar component $A_{\|}$of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

Example
Determine the projected component of the force vector $\boldsymbol{F}_{A C}$ along the axis of strut AO. Express your result as a Cartesian vector

Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

Cross (or vector) product

Laws of operation:

$$
\boldsymbol{A} \times \boldsymbol{B}=-\boldsymbol{B} \times \boldsymbol{A}
$$

$$
\alpha(\boldsymbol{A} \times \boldsymbol{B})=(\alpha \boldsymbol{A}) \times \boldsymbol{B}=\boldsymbol{A} \times(\alpha \boldsymbol{B})=(\boldsymbol{A} \times \boldsymbol{B}) \alpha
$$

$$
\boldsymbol{A} \times(\boldsymbol{B}+\boldsymbol{D})=\boldsymbol{A} \times \boldsymbol{B}+\boldsymbol{A} \times \boldsymbol{D}
$$

Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., i $\times \mathrm{i}=0$

Considering the cross product in Cartesian coordinates

Cross (or vector) product

Also, the cross product can be written as a determinant.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

Examples

Given the vectors

$$
\begin{aligned}
& \boldsymbol{A}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k} \\
& \boldsymbol{B}=15 \boldsymbol{i}-20 \boldsymbol{j}+18 \boldsymbol{k} \\
& \boldsymbol{C}=\boldsymbol{i}+7 \boldsymbol{k}
\end{aligned}
$$

Determine:

1. $\boldsymbol{A}+\boldsymbol{B}$
2. $B-C$
3. $\boldsymbol{A} \cdot \boldsymbol{B}$
4. $\boldsymbol{B} \times \boldsymbol{C}$
5. a unit vector in the direction of \boldsymbol{C}
6. the direction cosines of \boldsymbol{B}
